Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Dec 25 2017 14:42:55
%S 0,0,0,0,49920,18936480,1293857280,34839270480,518880929280,
%T 5122755187200,37376074229760,216261381584160,1041571537839360,
%U 4323020652281760,15864787390932480,52496402135289840,159036030441200640,446469968164496640,1172916400659517440
%N Number of edge colorings of the Petersen graph.
%C The Petersen graph G is a cubic symmetric graph on 10 vertices and 15 edges with edge chromatic number 4. a(n) is also the number of (vertex) n-colorings of L(G), the line graph (or interchange graph) of G.
%C "An edge coloring of a graph G is a coloring of the edges of G such that adjacent edges (or the edges bounding different regions) receive different colors. An edge coloring containing the smallest possible number of colors for a given graph is known as a minimum edge coloring." - Eric Weisstein, Edge Coloring.
%H Alois P. Heinz, <a href="/A159233/b159233.txt">Table of n, a(n) for n = 0..1000</a>
%H Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: <a href="http://dx.doi.org/10.1088/1367-2630/11/2/023001">10.1088/1367-2630/11/2/023001</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PetersenGraph.html">Petersen Graph</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EdgeColoring.html">Edge Coloring</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Edge_coloring">Edge Coloring</a>
%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (16, -120, 560, -1820, 4368, -8008, 11440, -12870, 11440, -8008, 4368, -1820, 560, -120, 16, -1).
%F a(n) = n^15 -30*n^14 + ... (see Maple program).
%F G.f.: 240 * x^4 * (120539*x^11 +4939568*x^10 +71258450*x^9 +441713760*x^8 +1285299570*x^7 +1834236432*x^6 +1296079344*x^5 +442507920*x^4 +68258235*x^3 +4153600*x^2 +75574*x +208) / (x-1)^16. - _Colin Barker_, Nov 28 2012
%p a:= n-> n^15 -30*n^14 +425*n^13 -3780*n^12 +23658*n^11 -110594*n^10 +399500*n^9 -1136005*n^8 +2560246*n^7 -4553907*n^6 +6285354*n^5 -6504300*n^4 +4739880*n^3 -2156064*n^2 +455616*n: seq(a(n), n=0..20);
%t Table[n^15 - 30 n^14 + 425 n^13 - 3780 n^12 + 23658 n^11 - 110594 n^10 + 399500 n^9 - 1136005 n^8 + 2560246 n^7 - 4553907 n^6 + 6285354 n^5 - 6504300 n^4 + 4739880 n^3 - 2156064 n^2 + 455616 n, {n, 0, 18}] (* _Michael De Vlieger_, Mar 27 2016 *)
%o (PARI) a(n)=prod(i=0,3,n-i)*(n^11 -24*n^10 +270*n^9 -1890*n^8 +9204*n^7 -32960*n^6 +89156*n^5 -183285*n^4 +282060*n^3 -310476*n^2 +220128*n -75936) \\ _Charles R Greathouse IV_, Nov 28 2012
%Y Cf. A270842 for edge colorings under the automorphisms of the Petersen graph. A296913.
%K nonn,easy
%O 0,5
%A _Alois P. Heinz_, Apr 06 2009