login
A159192
Number of n-colorings of the Brinkmann graph.
2
0, 0, 0, 0, 17788848, 36105677160, 9840227891760, 838876379282760, 33316659511111200, 770358326829901488, 11901952345453621920, 134595078267062009520, 1187095862662143754320, 8549491024060638451800, 52035271347355128360528, 274779269587463677316280
OFFSET
0,5
COMMENTS
The Brinkmann graph is a quartic graph on 21 vertices and 42 edges.
LINKS
Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: 10.1088/1367-2630/11/2/023001.
Weisstein, Eric W. "Brinkmann Graph".
Weisstein, Eric W. "Chromatic Polynomial".
Index entries for linear recurrences with constant coefficients, signature (22, -231, 1540, -7315, 26334, -74613, 170544, -319770, 497420, -646646, 705432, -646646, 497420, -319770, 170544, -74613, 26334, -7315, 1540, -231, 22, -1).
FORMULA
a(n) = n^21 -42*n^20 + ... (see Maple program).
MAPLE
a:= n-> n^21 -42*n^20 +861*n^19 -11480*n^18 +111881*n^17 -848708*n^16 +5207711*n^15 -26500254*n^14 +113675219*n^13 -415278052*n^12 +1299042255*n^11 -3483798283*n^10 +7987607279*n^9 -15547364853*n^8 +25384350310*n^7 -34133692383*n^6 +36783818141*n^5 -30480167403*n^4 +18168142566*n^3 -6896700738*n^2 +1242405972*n: seq(a(n), n=0..20);
CROSSREFS
Sequence in context: A250981 A344631 A372694 * A154875 A015353 A083619
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Apr 05 2009
STATUS
approved