login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159046
Dimension of the space of newforms of weight 2 on the subgroup Gamma_1(n).
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 2, 5, 2, 7, 3, 5, 4, 12, 5, 12, 6, 13, 8, 22, 7, 26, 13, 19, 11, 25, 13, 40, 14, 29, 19, 51, 13, 57, 25, 39, 21, 70, 23, 69, 24, 55, 37, 92, 22, 79, 42, 71, 34, 117, 34, 126, 39, 87, 61, 117, 31, 155, 68, 109, 45, 176, 55, 187, 56, 119, 87
OFFSET
1,13
FORMULA
a(n) = A029937(n) - sum a(m)*d(n/m), where the summation is over all divisors 1 < m < n of n and d is the divisor function.
Dirichlet convolution of A007247 and A029937. - Michael Somos, May 10 2015
EXAMPLE
a(p) = A029937(p) = (p-5)*(p-7)/24 for any prime p>3.
G.f. = x^11 + 2*x^13 + x^14 + x^15 + 2*x^16 + 5*x^17 + 2*x^18 + 7*x^19 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, Sum[ DivisorSum[ n/j, MoebiusMu[#] MoebiusMu[n/j/#] &] If[ j < 5, 0, 1 + DivisorSum[ j, #^2 MoebiusMu[ j/#] / 24 - EulerPhi [#] EulerPhi[j/#] / 4 &]], {j, Divisors@n}]]; (* Michael Somos, May 10 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv(n, j, sumdiv(n/j, k, moebius(k) * moebius(n/j/k)) * if( j<5, 0, 1 + sumdiv(j, k, k^2 * moebius(j/k) / 24 - eulerphi(k) * eulerphi(j/k) / 4))))}; /* Michael Somos, May 10 2015 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Steven Finch, Apr 03 2009
STATUS
approved