Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:45:43
%S 1,2,3,4,4,6,5,7,6,7,6,11,7,9,9,10,8,12,9,13,11,11,10,17,11,12,12,14,
%T 11,18,12,16,14,14,14,20,13,15,15,20,14,20,15,19,20,17,16,25,17,20,18,
%U 20,17,23,19,24,19,19,18,29,19,21,24,24,21,25,20,24,22,27,21,32,22,24,26
%N a(n) = count of numbers k <= n such that all proper divisors of k are divisors of n.
%C For primes p, a(p) = A036234(p) = A000720(p) + 1.
%H Robert Israel, <a href="/A158973/b158973.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A000005(n) + A004788(n-1). - _Vladeta Jovovic_, Apr 07 2009 (Corrected by _Altug Alkan_, Nov 25 2015)
%e For n = 8 we have the following proper divisors for k <= n: {1}, {1}, {1}, {1, 2}, {1}, {1, 2, 3}, {1}, {1, 2, 4}. Only k = 6 has a proper divisor that is not a divisor of 8, viz. 3. Hence a(8) = 7.
%p N:= 1000: # to get a(1) to a(N)
%p A:= Vector(N, numtheory:-tau):
%p for p in select(isprime,[2,seq(i,i=3..N,2)]) do
%p for d from 0 to floor(log[p](N))-1 do
%p R:= [seq(seq(p^d*(i+p*j), j=1..floor((N/p^d - i)/p)), i=1..p-1)];
%p A[R]:= map(`+`,A[R],1);
%p od
%p od:
%p convert(A,list); # _Robert Israel_, Nov 24 2015
%t f[n_] := Block[{d = Most@ Divisors@ n}, Select[Range@ n, Union[Most@ Divisors@ #, d] == d &]]; Array[Length@ f@ # &, {75}] (* _Michael De Vlieger_, Nov 25 2015 *)
%o (Magma) [ #[ k: k in [1..n] | forall(t){ d: d in Divisors(k) | d eq k or d in Divisors(n) } ]: n in [1..75] ];
%o (PARI) a004788(n) = {sfp = Set(); for (k=1, n-1, sfp = setunion(sfp, Set(factor(binomial(n, k))[, 1]))); return (length(sfp));}
%o a(n) = numdiv(n) + a004788(n-1); \\ _Altug Alkan_, Nov 25 2015
%Y Cf. A000040, A000720, A036234.
%K nonn
%O 1,2
%A _Jaroslav Krizek_, Apr 01 2009
%E Edited and extended by _Klaus Brockhaus_, Apr 06 2009