%I #17 Jan 13 2024 20:31:46
%S 12,28,44,60,76,92,108,124,140,156,172,188,204,220,236,252,268,284,
%T 300,316,332,348,364,380,396,412,428,444,460,476,492,508,524,540,556,
%U 572,588,604,620,636,652,668,684,700,716,732,748,764,780,796,812,828,844
%N Trajectory of 12 under repeated application of the map n -> A102370(n).
%C Coincides with A098502 for at least 1400 terms. - _R. J. Mathar_, Apr 16 2009
%C Agrees with A098502 for the first 65535 terms. A098502(65535) = a(65535) = 1048556 = 2^20 - 20. A098502(65536) = 1048572 = 2^20 - 4; a(65536) = 2097148 = 2^21 - 4. - _Philippe Deléham_, Jan 05 2023
%H David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Sloane/sloane300.html">Sloping binary numbers: a new sequence related to the binary numbers</a>, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp. Preprint versions: [<a href="http://neilsloane.com/doc/slopey.pdf">pdf</a>, <a href="http://neilsloane.com/doc/slopey.ps">ps</a>].
%H <a href="/index/Se#sequences_which_agree_for_a_long_time">Index entries for sequences which agree for a long time but are different</a>
%Y Cf. A098502, A102370.
%Y Trajectories of other numbers: A103192 (1), A103747 (2), A103621 (7), A159887 (29).
%K nonn,base
%O 1,1
%A _Philippe Deléham_, Apr 01 2009