Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Jul 13 2018 08:19:45
%S 1,2,12,110,1330,19852,351792,7209036,167607066,4357308098,
%T 125219900520,3941126688798,134808743674176,4979127855477336,
%U 197480359402576304,8370550907396970684,377599345119560766534,18061714498169627460982
%N Main diagonal in the array A158825 of coefficients of successive iterations of x*C(x), where C(x) is the Catalan function (A000108).
%C Triangle A158835 transforms A158831 into this sequence, where A158831 is the previous diagonal in A158825.
%C Triangle A158835 transforms this sequence into A158833, the next diagonal in A158825.
%H Paul D. Hanna, <a href="/A158832/b158832.txt">Table of n, a(n), n = 1..50.</a>
%e Array of coefficients in the i-th iteration of x*Catalan(x):
%e (1),1,2,5,14,42,132,429,1430,4862,16796,58786,208012,...;
%e 1,(2),6,21,80,322,1348,5814,25674,115566,528528,2449746,...;
%e 1,3,(12),54,260,1310,6824,36478,199094,1105478,6227712,...;
%e 1,4,20,(110),640,3870,24084,153306,993978,6544242,43652340,...;
%e 1,5,30,195,(1330),9380,67844,500619,3755156,28558484,...;
%e 1,6,42,315,2464,(19852),163576,1372196,11682348,100707972,...;
%e 1,7,56,476,4200,38052,(351792),3305484,31478628,303208212,...;
%e 1,8,72,684,6720,67620,693048,(7209036),75915708,807845676,...;
%e 1,9,90,945,10230,113190,1273668,14528217,(167607066),...;
%e 1,10,110,1265,14960,180510,2212188,27454218,344320262,(4357308098),...; ...
%e where terms in parenthesis form the initial terms of this sequence.
%t a[n_] := Module[{x, F, G}, F = InverseSeries[x - x^2 + O[x]^(n+2)]; G = x; For[i = 1, i <= n, i++, G = (F /. x -> G)]; Coefficient[G, x, n]];
%t Array[a, 18] (* _Jean-François Alcover_, Jul 13 2018, from PARI *)
%o (PARI) {a(n)=local(F=serreverse(x-x^2+O(x^(n+2))),G=x); for(i=1,n,G=subst(F,x,G));polcoeff(G,n)}
%Y Cf. A158825, A158831, A158833, A158834.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Mar 28 2009