Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jun 01 2017 10:18:50
%S 85,3696,79700,263166,283353,434935,678277,950264,1043678,1266169,
%T 1321463,1436753,2629623,3568796,3604676,3676738,3713180,5096401,
%U 5558697,7162624,9303565,9504536,10988577,12778681,13108392,18730119
%N Index of first of three successive primes which sum to a cube.
%H Chai Wah Wu, <a href="/A158796/b158796.txt">Table of n, a(n) for n = 1..1000</a>
%e a(1)=85 because prime(85)+prime(86)+prime(87)=439+443+449=11^3=(A076306(1))^3
%e a(2)=3696 because prime(3696)+prime(3697)+prime(3698)=34603+34607+34613=47^3=(A076306(2))^3.
%p count:= 0:
%p for x from 3 while count < 30 do
%p y:= x^3;
%p r:= floor(y/3);
%p p0:= prevprime(r); p1:= nextprime(p0); p2:= nextprime(p1);
%p while p0 + p1 + p2 > y do
%p p2:= p1;
%p p1:= p0;
%p p0:= prevprime(p0);
%p od:
%p while p0 + p1 + p2 < y do
%p p0:= p1;
%p p1:= p2;
%p p2:= nextprime(p2);
%p od:
%p if p0 + p1 + p2 = y then
%p count:= count+1;
%p A[count]:= numtheory:-pi(p0);
%p fi
%p od:
%p seq(A[i],i=1..count); # _Robert Israel_, Feb 10 2017
%o (Python)
%o from __future__ import division
%o from sympy import prevprime, nextprime, isprime, primepi
%o A158796_list, i = [], 3
%o while i < 10**6:
%o n = i**3
%o m = n//3
%o pm, nm = prevprime(m), nextprime(m)
%o k = n - pm - nm
%o if isprime(m):
%o if m == k:
%o A158796_list.append(primepi(pm))
%o else:
%o if nextprime(nm) == k:
%o A158796_list.append(primepi(pm))
%o elif prevprime(pm) == k:
%o A158796_list.append(primepi(pm)-1)
%o i += 1 # _Chai Wah Wu_, Jun 01 2017
%Y Cf. A076304, A076306.
%K nonn
%O 1,1
%A _Zak Seidov_, Nov 12 2009