login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*9^n.
2

%I #23 Sep 09 2024 15:13:37

%S 0,9,162,2187,26244,295245,3188646,33480783,344373768,3486784401,

%T 34867844010,345191655699,3389154437772,33044255768277,

%U 320275094369454,3088366981419735,29648323021629456,283512088894331673,2701703435345984178,25666182635786849691,243153309181138576020

%N a(n) = n*9^n.

%H Vincenzo Librandi, <a href="/A158749/b158749.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18,-81).

%F a(n) = n*9^n.

%F From _R. J. Mathar_, Mar 26 2009: (Start)

%F a(n) = 18*a(n-1) - 81*a(n-2) = A038299(n,1).

%F G.f.: 9*x/(1-9*x)^2. (End)

%F a(n) = A001019(n)*n. - _Omar E. Pol_, Mar 26 2009

%F From _Amiram Eldar_, Jul 20 2020: (Start)

%F Sum_{n>=1} 1/a(n) = log(9/8).

%F Sum_{n>=1} (-1)^(n+1)/a(n) = log(10/9). (End)

%F E.g.f.: 9*x*exp(9*x). - _Elmo R. Oliveira_, Sep 09 2024

%t Table[n 9^n, {n, 0, 20}] (* _Vincenzo Librandi_, Feb 25 2014 *)

%o (PARI) a(n) = n*9^n; \\ _Joerg Arndt_, Feb 23 2014

%o (Magma) [n*9^n: n in [0..20]]; // _Vincenzo Librandi_, Feb 25 2014

%Y Cf. A001019, A018215, A036289, A036290, A036291, A036292, A036293, A036294.

%Y Cf. A038299, A126431.

%K nonn,easy

%O 0,2

%A _Zerinvary Lajos_, Mar 25 2009