login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158726
Number of n-colorings of Tutte's graph.
2
0, 0, 0, 5031109632, 12269254183718467176, 30260924995437351313959360, 2196937758510267974836823961240, 18289382049683531604887056007569920, 35121324556313091408295530293937599472
OFFSET
0,4
COMMENTS
Tutte's graph is a non-Hamiltonian 3-connected cubic graph and has 46 vertices and 69 edges.
LINKS
Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: 10.1088/1367-2630/11/2/023001.
Eric Weisstein's World of Mathematics, Tutte's Graph
Eric Weisstein's World of Mathematics, Chromatic Polynomial
Index entries for linear recurrences with constant coefficients, signature (47, -1081, 16215, -178365, 1533939, -10737573, 62891499, -314457495, 1362649145, -5178066751, 17417133617, -52251400851, 140676848445, -341643774795, 751616304549, -1503232609098, 2741188875414, -4568648125690, 6973199770790, -9762479679106, 12551759587422, -14833897694226, 16123801841550, -16123801841550, 14833897694226, -12551759587422, 9762479679106, -6973199770790, 4568648125690, -2741188875414, 1503232609098, -751616304549, 341643774795, -140676848445, 52251400851, -17417133617, 5178066751, -1362649145, 314457495, -62891499, 10737573, -1533939, 178365, -16215, 1081, -47, 1).
FORMULA
a(n) = n^46 -69*n^45 + ... (see Maple program).
MAPLE
a:= n-> n^46 -69*n^45 +2346*n^44 -52388*n^43 +864090*n^42 -11224668*n^41 +119571727*n^40 -1073918754*n^39 +8297710913*n^38 -56003778409*n^37 +334132896213*n^36 -1779060044140*n^35 +8518879333839*n^34 -36919189414713*n^33 +145576288126673*n^32 -524582778909860*n^31 +1733926880890968*n^30 -5273413882507148*n^29 +14795464456226603*n^28 -38377923819676665*n^27 +92198081030378865*n^26 -205432211375233863*n^25 +425010309538429644*n^24 -817071784257131829*n^23 +1460390102714891125*n^22 -2427269661879319776*n^21
+3751228994738590035*n^20 -5388532329671500274*n^19 +7189601527638524235*n^18 -8900642446016426022*n^17 +10209296517904329101*n^16 -10829536267918267572*n^15 +10597816407206520989*n^14 -9538751939522734322*n^13 +7866252277444668060*n^12 -5914803096515435788*n^11 +4030254107398817420*n^10 -2468895384899966394*n^9 +1345725960500827472*n^8 -643733683706244378*n^7 +265193759121824448*n^6 -91607610668166096*n^5 +25500157237142048*n^4 -5365394930683662*n^3 +758432173511393*n^2 -53976523441418*n: seq(a(n), n=0..15);
CROSSREFS
Sequence in context: A072018 A227799 A216013 * A338394 A017409 A017529
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Mar 24 2009
STATUS
approved