login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 62*n^2 + 1.
2

%I #27 Feb 27 2024 12:07:03

%S 1,63,249,559,993,1551,2233,3039,3969,5023,6201,7503,8929,10479,12153,

%T 13951,15873,17919,20089,22383,24801,27343,30009,32799,35713,38751,

%U 41913,45199,48609,52143,55801,59583,63489,67519,71673,75951,80353,84879,89529,94303,99201

%N a(n) = 62*n^2 + 1.

%C The identity (62*n^2 + 1)^2 - (961*n^2 + 31)*(2*n)^2 = 1 can be written as a(n)^2 - A158675(n)*A005843(n)^2 = 1.

%H Vincenzo Librandi, <a href="/A158676/b158676.txt">Table of n, a(n) for n = 0..10000</a>

%H Vincenzo Librandi, <a href="https://web.archive.org/web/20090309225914/http://mathforum.org/kb/message.jspa?messageID=5785989&amp;tstart=0">X^2-AY^2=1</a>, Math Forum, 2007. [Wayback Machine link]

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

%F G.f.: -(1 + 60*x + 63*x^2)/(x-1)^3.

%F From _Amiram Eldar_, Mar 21 2023: (Start)

%F Sum_{n>=0} 1/a(n) = (coth(Pi/sqrt(62))*Pi/sqrt(62) + 1)/2.

%F Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/sqrt(62))*Pi/sqrt(62) + 1)/2. (End)

%t LinearRecurrence[{3, -3, 1}, {1, 63, 249}, 50] (* _Vincenzo Librandi_, Feb 18 2012 *)

%t 62*Range[0,40]^2+1 (* _Harvey P. Dale_, Mar 26 2022 *)

%o (Magma) I:=[1, 63, 249]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // _Vincenzo Librandi_, Feb 18 2012

%o (PARI) for(n=0, 40, print1(62*n^2 + 1", ")); \\ _Vincenzo Librandi_, Feb 18 2012

%Y Cf. A005843, A158676.

%K nonn,easy

%O 0,2

%A _Vincenzo Librandi_, Mar 24 2009

%E Comment rewritten, a(0) added and formula replaced by _R. J. Mathar_, Oct 22 2009