login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(n-1) + 16*a(n-2), starting a(0)=1, a(1)=4.
4

%I #18 Jan 03 2024 08:48:48

%S 1,4,20,84,404,1748,8212,36180,167572,746452,3427604,15370836,

%T 70212500,316145876,1439545876,6497879892,29530613908,133496692180,

%U 605986514708,2741933589588,12437717824916,56308655258324,255312140456980

%N a(n) = a(n-1) + 16*a(n-2), starting a(0)=1, a(1)=4.

%C Quadratic equation associated with group [3,3,5] which instead of t=phi uses t=2 in Phi(t) = (1 + sqrt(1+4*t^4))/(2*t).

%D H. S. M. Coxeter, Regular Polytopes, 3rd ed., Dover, NY, 1973, page 221.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,16).

%F a(n) = A168579(n) + 3*A168579(n-1).

%F G.f.: (1+3x)/(1-x-16*x^2). - _Philippe Deléham_, Mar 26 2009

%t Clear[M, v, t, n];

%t M = {{0, t}, {t, 1/t}};

%t v[0] = {1, 1};

%t v[n_] := v[n] = M.v[n - 1];

%t t = 2;

%t a = Table[t^n*v[n][[1]], {n, 0, 30}]

%Y Cf. A168579.

%K nonn,easy

%O 0,2

%A _Roger L. Bagula_, Mar 22 2009

%E Definition simplified following the Deleham proposition of Mar 2009 - The Assoc. Eds. of the OEIS, Aug 29 2010