OFFSET
1,1
COMMENTS
Primes in A158232.
It is conjectured that this sequence is infinite.
REFERENCES
Richard E. Crandall, Carl Pomerance, Prime Numbers, Springer, 2005.
Wladyslaw Narkiewicz, The development of prime number theory, Springer, 2000.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
FORMULA
Prime p is a term if the concatenations "13p" and "p13" both yield primes.
EXAMPLE
Prime p=3 is not a term: "p13"=313 is prime but "13p"=133 = 7*19.
For p=19, both 1319 and 1913 are prime; this is the first prime that meets the requirements of the definition, so a(1)=19.
MAPLE
cat2 := proc(a, b) ndigsb := max(ilog10(b)+1, 1) ; a*10^ndigsb+b ; end: for i from 1 to 800 do p := ithprime(i) ; if isprime(cat2(13, p)) and isprime(cat2(p, 13)) then printf("%d, ", p) ; fi; od: # R. J. Mathar, Apr 02 2009
MATHEMATICA
Select[Prime[Range[1000]], AllTrue[{13*10^IntegerLength[#]+#, 100#+13}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 17 2015 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 20 2009
EXTENSIONS
337, 1231, 1321 inserted by R. J. Mathar, Apr 02 2009
STATUS
approved