login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 14*n^2 + 1.
6

%I #36 Jan 20 2024 07:09:44

%S 15,57,127,225,351,505,687,897,1135,1401,1695,2017,2367,2745,3151,

%T 3585,4047,4537,5055,5601,6175,6777,7407,8065,8751,9465,10207,10977,

%U 11775,12601,13455,14337,15247,16185,17151,18145,19167,20217,21295,22401

%N a(n) = 14*n^2 + 1.

%C The identity (14*n^2 + 1)^2 - (49*n^2 + 7)*(2*n)^2 = 1 can be written as a(n)^2 - A158481(n)*A005843(n)^2 = 1.

%C Sequence found by reading the line from 15, in the direction 15, 57, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - _Omar E. Pol_, Sep 13 2011

%H Vincenzo Librandi, <a href="/A158482/b158482.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

%F G.f: x*(15+12*x+x^2)/(1-x)^3.

%F From _Amiram Eldar_, Feb 05 2021: (Start)

%F Sum_{n>=0} 1/a(n) = (1 - (Pi/sqrt(14))*coth(Pi/sqrt(14)))/2.

%F Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(14))*csch(Pi/sqrt(14)))/2.

%F Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(14))*sinh(Pi/sqrt(7)).

%F Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(14))*csch(Pi/sqrt(14)). (End)

%t LinearRecurrence[{3,-3,1},{15,57,127},50]

%o (Magma) I:=[15, 57, 127]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];

%o (PARI) a(n) = 14*n^2+1;

%Y Cf. A005843, A118277, A158481, A195019, A195020.

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Mar 20 2009