login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158481
a(n) = 49*n^2 + 7.
2
56, 203, 448, 791, 1232, 1771, 2408, 3143, 3976, 4907, 5936, 7063, 8288, 9611, 11032, 12551, 14168, 15883, 17696, 19607, 21616, 23723, 25928, 28231, 30632, 33131, 35728, 38423, 41216, 44107, 47096, 50183, 53368, 56651, 60032, 63511, 67088, 70763, 74536, 78407
OFFSET
1,1
COMMENTS
The identity (14*n^2+1)^2 - (49*n^2+7)*(2*n)^2 = 1 can be written as A158482(n)^2 - a(n)*A005843(n)^2 = 1.
LINKS
Vincenzo Librandi, X^2-AY^2=1, Math Forum, 2007. [Wayback Machine link]
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: 7*x*(8+5*x+x^2)/(1-x)^3.
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/sqrt(7))*Pi/sqrt(7) - 1)/14.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/sqrt(7))*Pi/sqrt(7))/14. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {56, 203, 448}, 40]
PROG
(Magma) I:=[56, 203, 448]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
(PARI) a(n)=49*n^2+7.
CROSSREFS
Sequence in context: A200833 A241611 A179403 * A325306 A376669 A193428
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 20 2009
STATUS
approved