Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Mar 05 2023 03:05:59
%S 30,138,318,570,894,1290,1758,2298,2910,3594,4350,5178,6078,7050,8094,
%T 9210,10398,11658,12990,14394,15870,17418,19038,20730,22494,24330,
%U 26238,28218,30270,32394,34590,36858,39198,41610,44094,46650,49278,51978,54750,57594,60510
%N a(n) = 36*n^2 - 6.
%C The identity (12*n^2 - 1)^2 - (36*n^2 - 6)*(2*n)^2 = 1 can be written as A158463(n)^2 - a(n)*A005843(n)^2 = 1.
%H Vincenzo Librandi, <a href="/A158462/b158462.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F G.f.: 6*x*(5 + 8*x - x^2)/(1-x)^3. - _Bruno Berselli_, Aug 27 2011
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _Vincenzo Librandi_, Feb 12 2012
%F From _Amiram Eldar_, Mar 05 2023: (Start)
%F Sum_{n>=1} 1/a(n) = (1 - cot(Pi/sqrt(6))*Pi/sqrt(6))/12.
%F Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/sqrt(6))*Pi/sqrt(6) - 1)/12. (End)
%t LinearRecurrence[{3, -3, 1}, {30, 138, 318}, 50] (* _Vincenzo Librandi_, Feb 12 2012 *)
%o (Magma) I:=[30, 138, 318]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // _Vincenzo Librandi_, Feb 12 2012
%o (PARI) for(n=1, 40, print1(36*n^2-6", ")); \\ _Vincenzo Librandi_, Feb 12 2012
%Y Cf. A005843, A158463.
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, Mar 19 2009