login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*x^n/(1+x^n) /n ).
5

%I #39 May 05 2023 01:45:07

%S 1,1,1,3,2,4,7,7,9,14,18,20,31,34,42,61,69,83,109,127,156,203,228,276,

%T 347,404,477,591,683,801,990,1132,1323,1598,1837,2148,2560,2929,3405,

%U 4018,4608,5319,6244,7124,8184,9569,10877,12465,14457,16412,18761,21633

%N G.f.: A(x) = exp( Sum_{n>=1} sigma(n)*x^n/(1+x^n) /n ).

%C Also the number of partitions of n in which each part occurs a triangle number (>=0) times. - _Seiichi Manyama_, May 11 2018

%H Alois P. Heinz, <a href="/A158441/b158441.txt">Table of n, a(n) for n = 0..10000</a> (first 1001 terms from Seiichi Manyama)

%F Euler transform of A048272. [_Vladeta Jovovic_, Mar 28 2009]

%F G.f.: 1/prod(n>=1, P(x^n)^((-1)^(n-1)) ) where P(x) = prod(k>=1, 1-x^k ), see Pari code. [_Joerg Arndt_, Jun 24 2011]

%F G.f.: Product_{k>0} (Sum_{m>=0} x^(k*m*(m+1)/2)) = (1+x+x^3+x^6+...)*(1+x^2+x^6+x^12+...)*(1+x^3+x^9+x^18+...)*... . - _Seiichi Manyama_, May 11 2018

%F a(n) ~ (log(2))^(3/8) * exp(Pi*sqrt(2*log(2)*n/3)) / (2^(11/8) * 3^(3/8) * Pi^(1/4) * n^(7/8)). - _Vaclav Kotesovec_, Oct 08 2018

%e From _Seiichi Manyama_, Mar 11 2018: (Start)

%e n | Partitions of n in which each part occurs a triangle number (>=0) times.

%e --+-------------------------------------------------------------------------

%e 1 | 1;

%e 2 | 2;

%e 3 | 3 = 2+1 = 1+1+1;

%e 4 | 4 = 3+1;

%e 5 | 5 = 4+1 = 3+2 = 2+1+1+1;

%e 6 | 6 = 5+1 = 4+2 = 3+2+1 = 3+1+1+1 = 2+2+2 = 1+1+1+1+1+1;

%e 7 | 7 = 6+1 = 5+2 = 4+3 = 4+2+1 = 4+1+1+1 = 2+2+2+1; (End)

%p with(numtheory):

%p b:= proc(n) option remember; -add((-1)^d, d=divisors(n)) end:

%p a:= proc(n) option remember; `if`(n=0, 1, add(add(

%p d*b(d), d=divisors(j))*a(n-j), j=1..n)/n)

%p end:

%p seq(a(n), n=0..60); # _Alois P. Heinz_, May 11 2018

%t nmax = 50; CoefficientList[Series[Product[(1 - x^(k*j))*(1 + x^(k*j))^2, {k, 1, nmax}, {j, 1, Floor[nmax/k] + 1}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 08 2018 *)

%o (PARI) {a(n)=if(n==0, 1, polcoeff(exp(sum(m=1, n, sigma(m)*x^m/(1+x^m+x*O(x^n))/m)), n))}

%o (PARI) N=99; x='x+O('x^N);

%o gf=1/prod(n=1,N,eta(x^n)^((-1)^(n-1)));

%o Vec(gf) /* _Joerg Arndt_, Jun 24 2011 */

%Y Cf. A006171, A000203, A295794, A320250.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Mar 28 2009