|
|
|
|
531, 2120, 4767, 8472, 13235, 19056, 25935, 33872, 42867, 52920, 64031, 76200, 89427, 103712, 119055, 135456, 152915, 171432, 191007, 211640, 233331, 256080, 279887, 304752, 330675, 357656, 385695, 414792, 444947, 476160, 508431, 541760
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The identity (529*n+1)^2-(529*n^2+2*n)*(23)^2=1 can be written as A158368(n)^2-a(n)*(23)^2=1.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(531+527*x)/(1-x)^3.
|
|
MATHEMATICA
|
LinearRecurrence[{3, -3, 1}, {531, 2120, 4767}, 50]
|
|
PROG
|
(Magma) I:=[531, 2120, 4767]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 529*n^2 + 2*n.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|