login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158336
A triangle of matrix polynomials: m(n)=antisymmeticmatix(n).pseudotranspose[antisymmeticmatix(n)].
0
1, 0, -1, -1, 0, 1, 0, 9, 0, -1, 1, 0, -34, 0, 1, 0, -25, 0, 90, 0, -1, -1, 0, 195, 0, -195, 0, 1, 0, 49, 0, -931, 0, 371, 0, -1, 1, 0, -644, 0, 3334, 0, -644, 0, 1, 0, -81, 0, 4788, 0, -9846, 0, 1044, 0, -1, -1, 0, 1605, 0, -25290, 0, 25290, 0, -1605, 0, 1
OFFSET
0,8
COMMENTS
The pseusotranspose operation used is: pseudotranspose[a(n)]=Reverse[I(n)].a(n).
Row sums are:
{1, -1, 0, 8, -32, 64, 0, -512, 2048, -4096, 0,...}. Unsigned row sums are:
{1, 1, 2, 10, 36, 116, 392, 1352, 4624, 15760, 53792,...}.
Example matrix is:
M(3)={{-1, -1, 2},
{-1, 2, -1},
{2, -1, -1}}
FORMULA
m(n)=antisymmeticmatix(n).pseudotranspose[antisymmeticmatix(n)].;
out_(n,m)=coefficients(characteristicpolynomial(m(n),x),x).
EXAMPLE
{1},
{0, -1},
{-1, 0, 1},
{0, 9, 0, -1},
{1, 0, -34, 0, 1},
{0, -25, 0, 90, 0, -1},
{-1, 0, 195, 0, -195, 0, 1},
{0, 49, 0, -931, 0, 371, 0, -1},
{1, 0, -644, 0, 3334, 0, -644, 0, 1},
{0, -81, 0, 4788, 0, -9846, 0, 1044, 0, -1},
{-1, 0, 1605, 0, -25290, 0, 25290, 0, -1605, 0, 1}
MATHEMATICA
Clear[M, T, d, a, x, a0];
pt[a_] := Reverse[IdentityMatrix[Length[a]]].a;
T[n_, m_, d_] := If[ m < n, (-1)^(n + m), If[m > n, -(-1)^(n + m), 0]];
M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}].pt[Table[T[ n, m, d], {n, 1, d}, {m, 1, d}]];
Table[Det[M[d]], {d, 1, 10}];
Table[M[d], {d, 1, 10}]
Table[CharacteristicPolynomial[M[d], x], {d, 1, 10}];
a = Join[{{1}}, Table[CoefficientList[Expand[CharacteristicPolynomial[M[ n], x]], x], {n, 1, 10}]];
Flatten[a]; Join[{1}, Table[Apply[Plus, CoefficientList[Expand[ CharacteristicPolynomial[M[n], x]], x]], {n, 1, 10}]];
CROSSREFS
KEYWORD
sign,tabl,uned
AUTHOR
Roger L. Bagula, Mar 16 2009
STATUS
approved