login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158329
a(n) = 484*n^2 - 2*n.
2
482, 1932, 4350, 7736, 12090, 17412, 23702, 30960, 39186, 48380, 58542, 69672, 81770, 94836, 108870, 123872, 139842, 156780, 174686, 193560, 213402, 234212, 255990, 278736, 302450, 327132, 352782, 379400, 406986, 435540, 465062, 495552
OFFSET
1,1
COMMENTS
The identity (484*n-1)^2-(484*n^2-2*n)*(22)^2=1 can be written as A158330(n)^2-a(n)*(22)^2=1.
LINKS
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(22^2*t-2)).
Vincenzo Librandi, X^2-AY^2=1.
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-482-486*x)/(x-1)^3.
E.g.f.: 2*exp(x)*x*(241 + 242*x). - Stefano Spezia, Aug 31 2024
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {482, 1932, 4350}, 50]
PROG
(Magma) I:=[482, 1932, 4350]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 484*n^2 - 2*n
CROSSREFS
Cf. A158330.
Sequence in context: A214170 A304325 A175536 * A231395 A263291 A121734
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 16 2009
STATUS
approved