login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158312
400n^2 + 2n.
2
402, 1604, 3606, 6408, 10010, 14412, 19614, 25616, 32418, 40020, 48422, 57624, 67626, 78428, 90030, 102432, 115634, 129636, 144438, 160040, 176442, 193644, 211646, 230448, 250050, 270452, 291654, 313656, 336458, 360060, 384462, 409664
OFFSET
1,1
COMMENTS
The identity (400*n+1)^2-(400*n^2+2*n)*(20)^2=1 can be written as A158313(n)^2-a(n)*(20)^2=1.
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(20^2*t+2)).
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(402+398*x)/(1-x)^3.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {402, 1604, 3606}, 50]
Table[400n^2+2n, {n, 40}] (* Harvey P. Dale, Jun 11 2023 *)
PROG
(Magma) I:=[402, 1604, 3606]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 400*n^2 + 2*n.
CROSSREFS
Cf. A158313.
Sequence in context: A031518 A104391 A250753 * A237177 A128767 A097740
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 16 2009
STATUS
approved