login
A158250
a(n) = 256*n - 1.
2
255, 511, 767, 1023, 1279, 1535, 1791, 2047, 2303, 2559, 2815, 3071, 3327, 3583, 3839, 4095, 4351, 4607, 4863, 5119, 5375, 5631, 5887, 6143, 6399, 6655, 6911, 7167, 7423, 7679, 7935, 8191, 8447, 8703, 8959, 9215, 9471, 9727, 9983, 10239, 10495
OFFSET
1,1
COMMENTS
The identity (256*n-1)^2 - (256*n^2 - 2*n)*16^2 = 1 can be written as a(n)^2 - A158249(n)*16^2 = 1.
LINKS
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(16^2*t-2)).
Vincenzo Librandi, X^2-AY^2=1
FORMULA
a(n) = 2*a(n-1) - a(n-2).
G.f.: x*(255 + x)/(1-x)^2.
E.g.f.: (-1 + 256*x)*exp(x). - G. C. Greubel, Apr 24 2022
MATHEMATICA
LinearRecurrence[{2, -1}, {255, 511}, 50]
PROG
(Magma) I:=[255, 511]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]];
(PARI) a(n) = 256*n - 1.
(SageMath) [256*n-1 for n in (1..50)] # G. C. Greubel, Apr 24 2022
CROSSREFS
Cf. A158249.
Sequence in context: A043348 A031469 A045065 * A045137 A329489 A045113
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 15 2009
STATUS
approved