login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158218
169n^2 - 2n.
2
167, 672, 1515, 2696, 4215, 6072, 8267, 10800, 13671, 16880, 20427, 24312, 28535, 33096, 37995, 43232, 48807, 54720, 60971, 67560, 74487, 81752, 89355, 97296, 105575, 114192, 123147, 132440, 142071, 152040, 162347, 172992, 183975, 195296
OFFSET
1,1
COMMENTS
The identity (169*n-1)^2-(169*n^2-2*n)*(13)^2=1 can be written as A158219(n)^2-a(n)*(13)^2=1.
LINKS
Vincenzo Librandi, X^2-AY^2=1
E. J. Barbeau, Polynomial Excursions, Chapter 10: Diophantine equations (2010), pages 84-85 (row 15 in the first table at p. 85, case d(t) = t*(13^2*t-2)).
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-167-171*x)/(x-1)^3.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {167, 672, 1515}, 50]
PROG
(Magma) I:=[167, 672, 1515]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
(PARI) a(n) = 169*n^2 - 2*n.
CROSSREFS
Cf. A158219.
Sequence in context: A142431 A142776 A362542 * A142287 A167574 A377180
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 14 2009
STATUS
approved