%I #3 Mar 30 2012 17:34:34
%S 1,0,0,0,0,0,0,-253,-506,0,0,-1288,-1288,0,64009,255530,255783,0,
%T 651728,1955184,1303456,-16194277,-95250682,-190373347,-127639236,
%U -247330776,-1235350424,-1976691024,3108480705,31420912490,92858107023
%N G.f. 1/( (1 + x)^7*(1 -7*x +28*x^2 -84*x^3 +210*x^4 -462*x^5 +924*x^6 -1463*x^7 +1738*x^8 -1463*x^9 +924*x^10 -462*x^11 +210*x^12 -84*x^13 +28*x^14 -7*x^15 +x^16) )
%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 69, Golay C_23 weights.
%F G.f.: 1/(1 + 253*x^7 + 506*x^8 + 1288*x^11 + 1288*x^12 + 506*x^15 + 253*x^16 + x^23).
%t f[x_] = 1 + 253* x^7 + 506*x^8 + 1288*x^11 + 1288*x^12 + 506*x^15 + 253*x^16 + x^23;
%t g[x] = ExpandAll[x^23*f[1/x]];
%t a = Table[SeriesCoefficient[ Series[1/g[x], {x, 0, 50}], n], {n, 0, 50}]
%K sign
%O 0,8
%A _Roger L. Bagula_, Mar 12 2009
%E Tightened redundant information - The Assoc. Eds. of the OEIS, Aug 30 2010