login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 16*n^2 + 2*n.
2

%I #25 Sep 08 2022 08:45:42

%S 18,68,150,264,410,588,798,1040,1314,1620,1958,2328,2730,3164,3630,

%T 4128,4658,5220,5814,6440,7098,7788,8510,9264,10050,10868,11718,12600,

%U 13514,14460,15438,16448,17490,18564,19670,20808,21978,23180,24414,25680

%N a(n) = 16*n^2 + 2*n.

%C The identity (16*n + 1)^2 - (16*n^2 + 2*n)*4^2 = 1 can be written as A158057(n)^2 - a(n)*4^2 = 1. - _Vincenzo Librandi_, Feb 09 2012

%C Sequence found by reading the line from 18, in the direction 18, 68, ... in the square spiral whose vertices are the generalized decagonal numbers A074377. - _Omar E. Pol_, Nov 02 2012

%H Vincenzo Librandi, <a href="/A158056/b158056.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).

%F G.f.: 2*x*(-9 - 7*x)/(x-1)^3.

%t LinearRecurrence[{3,-3,1},{18,68,150},50]

%t Table[16n^2+2n,{n,40}] (* _Harvey P. Dale_, Apr 13 2011 *)

%o (Magma) I:=[18, 68, 150]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];

%o (PARI) a(n) = 16*n^2 + 2*n.

%Y Cf. A158057.

%K nonn,easy

%O 1,1

%A _Vincenzo Librandi_, Mar 12 2009