login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=2, a(n+1) is the smallest prime > n*(sum of decimal digits of a(n)).
1

%I #8 Feb 17 2019 20:22:29

%S 2,3,7,23,23,29,67,97,131,47,113,59,173,149,197,257,227,191,199,367,

%T 331,149,311,127,241,179,443,307,281,331,211,127,331,233,277,563,509,

%U 521,307,397,761,577,809,733,577,857,929,941,673,787,1103,257,733,691,877

%N a(1)=2, a(n+1) is the smallest prime > n*(sum of decimal digits of a(n)).

%e a(1)=2;

%e a(2)=3 > 2 = 1*2;

%e a(3)=7 > 6 = 2*3;

%e a(4)=23 > 21 = 3*7;

%e a(5)=23 > 20 = 4*(2+3);

%e a(6)=29 > 25 = 5*(2+3);

%e a(7)=67 > 66 = 6*(2+9);

%e a(8)=97 > 91 = 7*(6+7);

%e a(9)=131 > 128 = 8*(9+7);

%e a(10)=47 > 45 = 9*(1+3+1).

%p A007953 := proc(n) add(d,d=convert(n,base,10)) ; end proc: A158054 := proc() option remember; if n = 1 then 2; else (n-1)*A007953(procname(n-1)) ; nextprime(%) ; end if; end proc: seq(A158054(n),n=1..120) ; # _R. J. Mathar_, May 19 2010

%Y Cf. A000027, A000040, A156615.

%K nonn,base,easy

%O 1,1

%A _Juri-Stepan Gerasimov_, Mar 12 2009

%E Corrected (193 replaced by 199, all terms from a(32) on replaced) by _R. J. Mathar_, May 19 2010

%E Edited by _Jon E. Schoenfield_, Feb 17 2019