login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Determinant of power series with alternate signs of gamma matrix with determinant 6!.
1

%I #9 Nov 27 2015 00:36:41

%S 720,95760,323885520,520091041680,646101191031120,1426723480107570960,

%T 1908953197598354801040,3574028285578402656777360,

%U 5645446200753726958758372240,9359837643523957747903959388560

%N Determinant of power series with alternate signs of gamma matrix with determinant 6!.

%C a(n) = Determinant(A - A^2 + A^3 - A^4 + A^5 - ... - (-1)^n*A^n)

%C where A is the submatrix A(1..7,1..7) of the matrix with factorial determinant

%C A = [[1,1,1,1,1,1,...], [1,2,1,2,1,2,...], [1,2,3,1,2,3,...], [1,2,3,4,1,2,...], [1,2,3,4,5,1,...], [1,2,3,4,5,6,...], ...]; note: Determinant A(1..n,1..n) = (n-1)!.

%D G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008.

%e a(1) = Determinant(A) = 6! = 720.

%p seq(Determinant(sum(A^i*(-1)^(i-1),i=1..n)),n=1..30);

%Y Cf. A111490, A158040-A158048.

%K nonn

%O 0,1

%A _Giorgio Balzarotti_ & _Paolo P. Lava_, Mar 11 2009