|
|
A158040
|
|
Determinant of power series of gamma matrix with determinant 2!.
|
|
12
|
|
|
2, 32, 258, 1664, 9710, 53664, 286762, 1497600, 7691238, 38995360, 195696226, 973894272, 4812812446, 23642953376, 115552680090, 562240972800, 2724987988054, 13161369525408, 63371643947474, 304287501281920, 1457424739149582, 6964697175476128
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) = Determinant(A + A^2 + A^3 + A^4 + A^5 + ... + A^n) where A is the submatrix A(1..3,1..3) of the matrix with factorial determinant A = [[1,1,1,1,1,1,...],[1,2,1,2,1,2,...], [1,2,3,1,2,3,...], [1,2,3,4,1,2,...], [1,2,3,4,5,1,...], [1,2,3,4,5,6,...], ...]; note: Determinant A(1..n,1..n) = (n-1)!.
|
|
REFERENCES
|
G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008.
|
|
LINKS
|
|
|
FORMULA
|
Empirical g.f.: 2*x*(8*x^6 -50*x^4 +64*x^3 -25*x^2 +1) / ((x -1)^2*(2*x -1)^2*(2*x^2 -5*x +1)^2). - Colin Barker, Jul 13 2014
|
|
EXAMPLE
|
a(1) = Determinant(A) = 2! = 2.
|
|
MAPLE
|
seq(Determinant(sum(A2^i, i=1..n)), n=1..30);
|
|
PROG
|
(PARI) vector(100, n, matdet(sum(k=1, n, [1, 1, 1 ; 1, 2, 1 ; 1, 2, 3]^k))) \\ Colin Barker, Jul 13 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
More terms, and offset changed to 1 by Colin Barker, Jul 13 2014
|
|
STATUS
|
approved
|
|
|
|