login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158040 Determinant of power series of gamma matrix with determinant 2!. 12
2, 32, 258, 1664, 9710, 53664, 286762, 1497600, 7691238, 38995360, 195696226, 973894272, 4812812446, 23642953376, 115552680090, 562240972800, 2724987988054, 13161369525408, 63371643947474, 304287501281920, 1457424739149582, 6964697175476128 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
a(n) = Determinant(A + A^2 + A^3 + A^4 + A^5 + ... + A^n) where A is the submatrix A(1..3,1..3) of the matrix with factorial determinant A = [[1,1,1,1,1,1,...],[1,2,1,2,1,2,...], [1,2,3,1,2,3,...], [1,2,3,4,1,2,...], [1,2,3,4,5,1,...], [1,2,3,4,5,6,...], ...]; note: Determinant A(1..n,1..n) = (n-1)!.
REFERENCES
G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008.
LINKS
FORMULA
Empirical g.f.: 2*x*(8*x^6 -50*x^4 +64*x^3 -25*x^2 +1) / ((x -1)^2*(2*x -1)^2*(2*x^2 -5*x +1)^2). - Colin Barker, Jul 13 2014
EXAMPLE
a(1) = Determinant(A) = 2! = 2.
MAPLE
seq(Determinant(sum(A2^i, i=1..n)), n=1..30);
PROG
(PARI) vector(100, n, matdet(sum(k=1, n, [1, 1, 1 ; 1, 2, 1 ; 1, 2, 3]^k))) \\ Colin Barker, Jul 13 2014
CROSSREFS
Cf. A111490.
Sequence in context: A008512 A179074 A035602 * A202746 A212797 A203017
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms, and offset changed to 1 by Colin Barker, Jul 13 2014
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 13 03:33 EDT 2024. Contains 375857 sequences. (Running on oeis4.)