The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A158040 Determinant of power series of gamma matrix with determinant 2!. 12
 2, 32, 258, 1664, 9710, 53664, 286762, 1497600, 7691238, 38995360, 195696226, 973894272, 4812812446, 23642953376, 115552680090, 562240972800, 2724987988054, 13161369525408, 63371643947474, 304287501281920, 1457424739149582, 6964697175476128 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) = Determinant(A + A^2 + A^3 + A^4 + A^5 + ... + A^n) where A is the submatrix A(1..3,1..3) of the matrix with factorial determinant A = [[1,1,1,1,1,1,...],[1,2,1,2,1,2,...], [1,2,3,1,2,3,...], [1,2,3,4,1,2,...], [1,2,3,4,5,1,...], [1,2,3,4,5,6,...], ...]; note: Determinant A(1..n,1..n) = (n-1)!. REFERENCES G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008. LINKS Table of n, a(n) for n=1..22. FORMULA Empirical g.f.: 2*x*(8*x^6 -50*x^4 +64*x^3 -25*x^2 +1) / ((x -1)^2*(2*x -1)^2*(2*x^2 -5*x +1)^2). - Colin Barker, Jul 13 2014 EXAMPLE a(1) = Determinant(A) = 2! = 2. MAPLE seq(Determinant(sum(A2^i, i=1..n)), n=1..30); PROG (PARI) vector(100, n, matdet(sum(k=1, n, [1, 1, 1 ; 1, 2, 1 ; 1, 2, 3]^k))) \\ Colin Barker, Jul 13 2014 CROSSREFS Cf. A111490. Sequence in context: A008512 A179074 A035602 * A202746 A212797 A203017 Adjacent sequences: A158037 A158038 A158039 * A158041 A158042 A158043 KEYWORD nonn AUTHOR Giorgio Balzarotti & Paolo P. Lava, Mar 11 2009 EXTENSIONS More terms, and offset changed to 1 by Colin Barker, Jul 13 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 13 03:33 EDT 2024. Contains 375857 sequences. (Running on oeis4.)