login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients in expansion of (-1-x)^floor(n/2)(1-x)^ceiling(n/2).
3

%I #17 Nov 17 2019 01:45:53

%S 1,1,-1,-1,0,1,-1,1,1,-1,1,0,-2,0,1,1,-1,-2,2,1,-1,-1,0,3,0,-3,0,1,-1,

%T 1,3,-3,-3,3,1,-1,1,0,-4,0,6,0,-4,0,1,1,-1,-4,4,6,-6,-4,4,1,-1,-1,0,5,

%U 0,-10,0,10,0,-5,0,1,-1,1,5,-5,-10,10,10,-10,-5,5,1,-1

%N Triangle of coefficients in expansion of (-1-x)^floor(n/2)(1-x)^ceiling(n/2).

%C Triangle T(n,k), 0 <= k <= n, read by rows given by [1,-2,1,0,0,0,0,0,0,...] DELTA [-1,0,1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.

%F T(n,k) = T(n-2,k-2) - T(n-2,k), T(0,0)=T(1,0)=1, T(1,1)=-1.

%F G.f.: (1+(1-y)*x)/(1+(1-y^2)*x^2). - _Philippe Deléham_, Dec 02 2011

%e Triangle begins:

%e 1;

%e 1, -1;

%e -1, 0, 1;

%e -1, 1, 1, -1;

%e 1, 0, -2, 0, 1; ...

%t Flatten[Table[CoefficientList[(-1 - x)^Floor[n/2] (1 - x)^Ceiling[n/2], x], {n, 0, 11}]] (* _T. D. Noe_, Dec 01 2011 *)

%Y Cf. A051160.

%K sign,tabl

%O 0,13

%A _Philippe Deléham_, Mar 11 2009

%E Corrected by _Philippe Deléham_, Dec 02 2011