OFFSET
0,2
COMMENTS
The associated primes are in A157980.
All 3^(2^n)+a(n) = A157980(n) for n <= 11 are certified primes. - D. S. McNeil, Mar 15 2009
LINKS
Florentin Smarandache, Seven Conjectures in Geometry and Number Theory, arXiv:0903.1380 [math.GM], Mar 8, 2009.
FORMULA
EXAMPLE
a(0) = 0 because 3^2^0 + 0 = 3^1 + 0 = 3 is prime. a(1) = 2 because 3^2^1 + 2 = 3^2 + 0 = 3 is prime. a(2) = 2 because 3^4 + 2 = 83 is prime. a(3) = 2 because 3^8 + 2 = 6563 is prime. a(4) = 26 because 3^16 + 26 = 43046747 is prime. a(5) = 70 because 3^32 + 2 = 1853020188851911 is prime. a(6) = 92 because 3^64 + 2 = 3433683820292512484657849089373 is prime.
MATHEMATICA
lnnk[n_]:=With[{c=3^(2^n)}, NextPrime[c]-c]; Join[{0}, Array[lnnk, 10]] (* The program generates the first 11 terms of the sequence. *) (* Harvey P. Dale, Nov 02 2024 *)
PROG
(PARI) { a(n) = nextprime( 3^(2^n) ) - 3^(2^n) } \\ Max Alekseyev, Sep 13 2009
CROSSREFS
KEYWORD
more,nonn,hard
AUTHOR
Jonathan Vos Post, Mar 10 2009
EXTENSIONS
a(7)-a(11) from D. S. McNeil, Mar 15 2009
a(12)-a(14) from Max Alekseyev, Sep 13 2009
a(15)-a(16) from Donovan Johnson, Jul 11 2010
STATUS
approved