Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Jan 31 2024 12:02:27
%S 0,0,2,42258,217727724,120716639420,15509657482350,784759781145102,
%T 21017383336908728,355260899699333784,4240584584018848890,
%U 38562180170120230250,281853103175962977252,1722023964356731913748,9058240485370625897894,41970560739174197375910
%N Number of n-colorings of the Desargues graph.
%C The Desargues graph is a cubic symmetric distance-regular graph with 20 vertices and 30 edges.
%H Alois P. Heinz, <a href="/A157959/b157959.txt">Table of n, a(n) for n = 0..1000</a>
%H Timme, Marc; van Bussel, Frank; Fliegner, Denny; Stolzenberg, Sebastian (2009) "Counting complex disordered states by efficient pattern matching: chromatic polynomials and Potts partition functions", New J. Phys. 11 023001, doi: <a href="http://dx.doi.org/10.1088/1367-2630/11/2/023001">10.1088/1367-2630/11/2/023001</a>.
%H Eric Weisstein's World of Mathematics, "<a href="http://mathworld.wolfram.com/DesarguesGraph.html">Desargues Graph</a>".
%H Eric Weisstein's World of Mathematics, "<a href="http://mathworld.wolfram.com/ChromaticPolynomial.html">Chromatic Polynomial</a>".
%H <a href="/index/Rec#order_21">Index entries for linear recurrences with constant coefficients</a>, signature (21, -210, 1330, -5985, 20349, -54264, 116280, -203490, 293930, -352716, 352716, -293930, 203490, -116280, 54264, -20349, 5985, -1330, 210, -21, 1).
%F a(n) = n^20 -30*n^19 +435*n^18 -4060*n^17 +27405*n^16 -142486*n^15 +593275*n^14 -2029770*n^13 +5806295*n^12 -14047858*n^11 +28942903*n^10 -50912200*n^9 +76328405*n^8 -96864050*n^7 +102660272*n^6 -88808037*n^5 +60384665*n^4 -30272495*n^3 +9922451*n^2 -1585121*n.
%p a:= n-> n^20 -30*n^19 +435*n^18 -4060*n^17 +27405*n^16 -142486*n^15 +593275*n^14 -2029770*n^13 +5806295*n^12 -14047858*n^11 +28942903*n^10 -50912200*n^9 +76328405*n^8 -96864050*n^7 +102660272*n^6 -88808037*n^5 +60384665*n^4 -30272495*n^3 +9922451*n^2 -1585121*n: seq(a(n), n=0..30);
%K nonn,easy
%O 0,3
%A _Alois P. Heinz_, Mar 10 2009