The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157896 Coefficients of polynomials of a prime like factor set (skip power): p(x,n)=Sum[x^i, {i, 0, (Prime[n] - 1)/2,2}]; q(n,n)=Sum[(-1)^i*x^i, {i, 0, (Prime[n] - 1)/2,2}]; t(x,n)=If[n == 0, 1, If[n == 1, x + 1, (x + 1)*p[x, n]*q[x, n]]]. 0
 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Row sums are: {1, 2, 8, 32, 50, 128, 200, 242, 392, 512, 648,...}. LINKS FORMULA p(x,n)=Sum[x^i, {i, 0, (Prime[n] - 1)/2.2}]; q(n,n)=Sum[(-1)^i*x^i, {i, 0, (Prime[n] - 1)/2,2}]; t(x,n)=If[n == 0, 1, If[n == 1, x + 1, (x + 1)*p[x, n]*q[x, n]]]; out_(n,m)=coefficients(t(x,n)). EXAMPLE {1}, {1, 1}, {1, 1, 2, 2, 1, 1}, {1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 2, 2, 1, 1}, {1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1}, {1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1} MATHEMATICA Clear[p, q, t, x, n]; p[x_, n_] := Sum[x^i, {i, 0, (Prime[n] - 1)/2, 2}]; q[x_, n_] := Sum[(-1)^i*x^i, {i, 0, (Prime[n] - 1)/2, 2}]; t[x_, n_] := If[n == 0, 1, If[n == 1, x + 1, (x + 1)*p[x, n]*q[x, n]]]; Table[ExpandAll[t[x, n]], {n, 0, 10, 2}]; Table[CoefficientList[ExpandAll[t[x, n]], x], {n, 0, 10, 2}]; Flatten[%] CROSSREFS Sequence in context: A140193 A073741 A071838 * A156072 A215788 A060990 Adjacent sequences:  A157893 A157894 A157895 * A157897 A157898 A157899 KEYWORD nonn,tabl,uned AUTHOR Roger L. Bagula, Mar 08 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 7 10:18 EDT 2021. Contains 343650 sequences. (Running on oeis4.)