login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of Bernoulli(n, 1/5).
4

%I #14 Jul 10 2017 04:18:47

%S 1,-3,1,6,-29,-74,4537,1946,-23789,-88434,15034541,6154786,

%T -10417027559,-607884394,13199705071,80834386026,-34108052679853,

%U -13923204233954,51709981061257363,3015393801263666,-1029159167703800359,-801997872697905114,629565265428734672873

%N Numerator of Bernoulli(n, 1/5).

%C From _Wolfdieter Lang_, Jul 05 2017: (Start)

%C a(n) gives also the numerators of the generalized Bernoulli numbers B[5,1](n) = 5^n*B(n, 1/5) with the Bernoulli polynomials B(n, x) = Bernoulli(n, x) from A196838/A196839 or A053382/A053383. For the denominators see A288872(n) = A157867(n)/5^n.

%C (-1)^n*a(n) gives the numerators of the generalized Bernoulli numbers B[5,4](n). The denominators are also A288872(n).

%C The generalized Bernoulli numbers B[d,a](n), for d >= 1, a >= 0, with gcd(d, a) = 1 are defined in terms of generalized Stirling2 numbers by B[d,a](n) = Sum_{k=0..n} ((-1)^k / (k+1))*S2[d,a](n, k)*k!, n >= 0. See A285061 for more details.

%C (End)

%H Vincenzo Librandi, <a href="/A157866/b157866.txt">Table of n, a(n) for n = 0..250</a>

%t Table[Numerator[BernoulliB[n, 1/5]], {n, 0, 50}] (* _Vincenzo Librandi_, Mar 16 2014 *)

%o (PARI) a(n)=numerator(subst(bernpol(n, x), x, 1/5)); \\ _Michel Marcus_, Jul 06 2017

%Y For denominators see A157867, and also A288872.

%Y Cf. A053382/A053383, A196838/A196839, A285061.

%K sign,frac

%O 0,2

%A _N. J. A. Sloane_, Nov 08 2009