login
A157822
1482401250n^2+108900n+1.
3
1482510151, 5929822801, 13341937951, 23718855601, 37060575751, 53367098401, 72638423551, 94874551201, 120075481351, 148241214001, 179371749151, 213467086801, 250527226951, 290552169601, 333541914751, 379496462401, 428415812551
OFFSET
1,1
COMMENTS
The identity (1482401250*n^2+108900*n+1)^2-(27225*n^2+2*n)*(8984250*n+330)^2=1 can be written as a(n)^2-A157820(n)*A157821(n)^2=1.
FORMULA
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f.: x*(-x^2-1482292348*x-1482510151)/(x-1)^3.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {1482510151, 5929822801, 13341937951}, 30]
PROG
(Magma) I:=[1482510151, 5929822801, 13341937951]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..30]];
(PARI) a(n) = 1482401250*n^2+108900*n+1.
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 07 2009
STATUS
approved