login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157664
a(n) = 80000*n^2 + 800*n + 1.
3
80801, 321601, 722401, 1283201, 2004001, 2884801, 3925601, 5126401, 6487201, 8008001, 9688801, 11529601, 13530401, 15691201, 18012001, 20492801, 23133601, 25934401, 28895201, 32016001, 35296801, 38737601, 42338401, 46099201
OFFSET
1,1
COMMENTS
The identity (80000n^2 + 800n + 1)^2 - (100n^2 + n)*(8000n + 40)^2 = 1 can be written as a(n)^2 - A055438(n)*A157663(n)^2 = 1. - Vincenzo Librandi, Feb 04 2012
This is the case s=10 of the identity (8*n^2*s^4 + 8*n*s^2 + 1)^2 - (n^2*s^2 + n)*(8*n*s^3 + 4*s)^2 = 1. - Bruno Berselli, Feb 04 2012
FORMULA
G.f.: x*(80801 + 79198*x + x^2)/(1-x)^3. - Vincenzo Librandi, Feb 04 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Feb 04 2012
E.g.f.: (1 + 80800*x + 80000*x^2)*exp(x) - 1. - G. C. Greubel, Nov 17 2018
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {80801, 321601, 722401}, 50] (* Vincenzo Librandi, Feb 04 2012 *)
PROG
(Magma) I:=[80801, 321601, 722401]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Feb 04 2012
(PARI) for(n=1, 40, print1(80000*n^2 + 800*n + 1", ")); \\ Vincenzo Librandi, Feb 04 2012
(Sage) [80000*n^2+800*n+1 for n in (1..40)] # G. C. Greubel, Nov 17 2018
(GAP) List([1..40], n -> 80000*n^2+800*n+1); # G. C. Greubel, Nov 17 2018
CROSSREFS
Sequence in context: A264805 A050517 A069304 * A218106 A064001 A252625
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 04 2009
STATUS
approved