login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of the elementwise product of binomial coefficients with q-binomial coefficients [n,k] for q = 3.
3

%I #14 Sep 08 2022 08:45:42

%S 1,1,1,1,8,1,1,39,39,1,1,160,780,160,1,1,605,12100,12100,605,1,1,2184,

%T 165165,677600,165165,2184,1,1,7651,2088723,32401985,32401985,2088723,

%U 7651,1,1,26240,25095280,1405335680,5313925540,1405335680,25095280

%N Triangle of the elementwise product of binomial coefficients with q-binomial coefficients [n,k] for q = 3.

%C Row sums are: {1, 2, 10, 80, 1102, 25412, 1012300, 68996720, 8174839942, 1670428649564, 594362629986268,...}.

%C Other triangles in the family (see name) include: q = 2 (see A157638), q = 3 (this triangle), and q = 4 (see A157641). - _Werner Schulte_, Nov 16 2018

%H Andrew Howroyd, <a href="/A157640/b157640.txt">Table of n, a(n) for n = 0..1274</a> (rows n=0..49)

%F T(n,k) = t(n)/(t(k)*t(n-k)) where t(n) = Product_{k=1..n} Sum_{i=0..k-1} k*3^i.

%F T(n,k) = binomial(n,k) * A022167(n,k) for 0 <= k <= n. - _Werner Schulte_, Nov 16 2018

%e Triangle begins:

%e 1;

%e 1, 1;

%e 1, 8, 1;

%e 1, 39, 39, 1;

%e 1, 160, 780, 160, 1;

%e 1, 605, 12100, 12100, 605, 1;

%e 1, 2184, 165165, 677600, 165165, 2184, 1;

%e 1, 7651, 2088723, 32401985, 32401985, 2088723, 7651, 1;

%e 1, 26240, 25095280, 1405335680, 5313925540, 1405335680, 25095280, 26240, 1;

%e ...

%t t[n_, m_] = Product[Sum[k*(m + 1)^i, {i, 0, k - 1}], {k, 1, n}];

%t b[n_, k_, m_] = t[n, m]/(t[k, m]*t[n - k, m]);

%t Flatten[Table[Table[b[n, k, 2], {k, 0, n}], {n, 0, 10}]]

%o (PARI) T(n, k) = {binomial(n, k)*polcoef(x^k/prod(j=0, k, 1-3^j*x+x*O(x^n)), n)} \\ _Andrew Howroyd_, Nov 19 2018

%o (PARI) my(q=3); for(n=0,10, for(k=0,n, print1(binomial(n,k)*prod(j=0,k-1, (1-q^(n-j))/(1-q^(j+1))), ", ")); print) \\ _G. C. Greubel_, Nov 17 2018

%o (Magma) q:=3; [[k le 0 select 1 else Binomial(n,k)*(&*[(1-q^(n-j))/(1-q^(j+1)): j in [0..(k-1)]]): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Nov 17 2018

%o (Sage) [[ binomial(n,k)*gaussian_binomial(n,k).subs(q=3) for k in range(n+1)] for n in range(10)] # _G. C. Greubel_, Nov 17 2018

%Y Cf. A007318, A022167, A157638, A157641.

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_, Mar 03 2009

%E Edited and simpler name by _Werner Schulte_ and _Andrew Howroyd_, Nov 19 2018