login
A157536
Half the number of length n integer sequences with sum zero and sum of squares 32.
1
1, 3, 6, 110, 1095, 7161, 37919, 182367, 860400, 3893395, 17126571, 73368945, 300879670, 1173812745, 4380376770, 15753693858, 54909242667, 186135465987, 614751720490, 1979351435670, 6214975736739, 19042979887371, 57000797449509
OFFSET
2,2
LINKS
Robert Israel and R. H. Hardin, Table of n, a(n) for n = 2..10000 (n = 2..50 from R. H. Hardin)
FORMULA
[cache enabling] count(n,s,ss)->count(n,t,tt) where t=s mod n, q=(t-s)/n, tt=ss+2*q*s+n*q^2; count(n,t,tt)=Sum_{i^2<=tt} count(n-1,t-i,tt-i^2). a(n)=count(n,0,32)/2.
G.f.: (1 - 30*x + 435*x^2 - 3960*x^3 + 25185*x^4 - 118206*x^5 + 420686*x^6 - 1134432*x^7 + 2206965*x^8 - 2665333*x^9 + 3050124*x^10 - 34121034*x^11 + 301563025*x^12 - 1647844221*x^13 + 6443298873*x^14 - 19087013776*x^15 + 43441736331*x^16 - 74712136848*x^17 + 90999467153*x^18 - 61749383676*x^19 - 17226181401*x^20 + 95716380496*x^21 - 106118533542*x^22 + 46133383200*x^23 + 12059750667*x^24 - 19161162021*x^25 + 2427632556*x^26 + 2280934382*x^27 + 225810123*x^28 + 5162259*x^29 + 16214*x^30) * x^2/(1-x)^33. - Robert Israel, Dec 25 2016
MAPLE
g:= proc(n, s, ss) option remember;
if n = 1 then if ss = s^2 then return 1 else return 0 fi fi;
procname(n-1, s, ss) + add(procname(n-1, s-t, ss-t^2)
+procname(n-1, s+t, ss-t^2), t=1..floor(sqrt(ss)));
end proc:
seq(g(n, 0, 32)/2, n=2..50); # Robert Israel, Dec 25 2016
MATHEMATICA
g[n_, s_, ss_] := g[n, s, ss] = If[n == 1, If[ss == s^2, 1, 0], g[n-1, s, ss] + Sum[g[n-1, s-t, ss-t^2] + g[n-1, s+t, ss-t^2], {t, 1, Floor[Sqrt[ss]]}]];
Table[g[n, 0, 32]/2, {n, 2, 50}] (* Jean-François Alcover, Aug 28 2022, after Robert Israel *)
CROSSREFS
Sequence in context: A092680 A101574 A082980 * A046488 A074880 A225884
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 02 2009
STATUS
approved