Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 08 2022 08:45:42
%S 473,564,663,770,885,1008,1139,1278,1425,1580,1743,1914,2093,2280,
%T 2475,2678,2889,3108,3335,3570,3813,4064,4323,4590,4865,5148,5439,
%U 5738,6045,6360,6683,7014,7353,7700,8055,8418,8789,9168,9555,9950,10353,10764
%N a(n) = 4*n^2 + 79*n + 390.
%C The identity (128*n^2 + 2528*n + 12481)^2 - (4*n^2 + 79*n + 390)*(64*n + 632)^2 = 1 can be written as A157436(n)^2 - a(n)*A157435(n)^2 = 1.
%H Vincenzo Librandi, <a href="/A157434/b157434.txt">Table of n, a(n) for n = 1..10000</a>
%H Vincenzo Librandi, <a href="http://mathforum.org/kb/message.jspa?messageID=5773147&tstart=0">X^2-AY^2=1</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
%F G.f.: x*(-390*x^2 + 855*x - 473)/(x-1)^3. [corrected by _Georg Fischer_, May 11 2019]
%t LinearRecurrence[{3,-3,1},{473,564,663},50]
%o (Magma) I:=[473, 564, 663]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]];
%o (PARI) a(n) = 4*n^2 + 79*n + 390
%Y Cf. A157435, A157436.
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, Mar 01 2009