login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Products (semiprimes) of two distinct safe primes.
9

%I #10 Aug 25 2017 10:53:35

%S 35,55,77,115,161,235,253,295,329,413,415,517,535,581,649,749,835,895,

%T 913,1081,1135,1169,1177,1253,1315,1357,1589,1735,1795,1837,1841,1909,

%U 1915,1969,2335,2395,2429,2461,2497,2513,2515,2681,2773,2815,2893,2935

%N Products (semiprimes) of two distinct safe primes.

%C 35=5*7; 5 and 7 are safe primes, 55=5*11; 5 and 11 are safe primes,...

%H Michael De Vlieger, <a href="/A157352/b157352.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = 35 since 35 = 5 * 7, and (5 - 1)/2 = 2 and (7 - 1)/2 = 3 are both prime, thus 5 and 7 are distinct safe primes.

%t lst={};Do[If[Plus@@Last/@FactorInteger[n]==2,a=Length[First/@FactorInteger[n]];If[a==2,b=First/@FactorInteger[n];c=b[[1]];d=b[[2]];If[PrimeQ[(c-1)/2]&&PrimeQ[(d-1)/2],AppendTo[lst,n]]]],{n,7!}];lst

%t Select[Select[Range@ 3000, PrimeNu@ # == 2 &], Times @@ Map[If[PrimeQ[(# - 1)/2], #, 0] &, Map[First, FactorInteger@ #]] == # &] (* _Michael De Vlieger_, Feb 28 2016 *)

%t Module[{upto=3000,sp},sp=Select[Prime[Range[PrimePi[upto/5]]],PrimeQ[(#-1)/2]&];Select[Union[Times@@@Subsets[sp,{2}]],#<+upto&]] (* _Harvey P. Dale_, Aug 25 2017 *)

%Y Cf. A001358, A005384, A005385, A006881, A007304, A111206, A157342, A157344, A157345, A157346, A157347.

%K nonn

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Feb 27 2009

%E Example corrected by _Harvey P. Dale_, Aug 25 2017