Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Apr 18 2024 11:00:06
%S 229,281,365,1009,1405,1961,5825,8149,11401,33941,47489,66445,197821,
%T 276785,387269,1152985,1613221,2257169,6720089,9402541,13155745,
%U 39167549,54802025,76677301,228285205,319409609,446908061,1330543681
%N Positive numbers y such that y^2 is of the form x^2+(x+281)^2 with integer x.
%C (-60, a(1)) and (A129626(n), a(n+1)) are solutions (x, y) to the Diophantine equation x^2+(x+281)^2 = y^2.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,6,0,0,-1).
%F a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=229, a(2)=281, a(3)=365, a(4)=1009, a(5)=1405, a(6)=1961.
%F G.f.: x*(1-x)*(229+510*x+875*x^2+510*x^3+229*x^4) / (1-6*x^3+x^6).
%F a(3*k-1) = 281*A001653(k) for k >= 1.
%F Limit_{n -> oo} a(n)/a(n-3) = 3+2*sqrt(2).
%F Limit_{n -> oo} a(n)/a(n-1) = (297+68*sqrt(2))/281 for n mod 3 = {0, 2}.
%F Limit_{n -> oo} a(n)/a(n-1) = (130803+73738*sqrt(2))/281^2 for n mod 3 = 1.
%e (-60, a(1)) = (-60, 229) is a solution: (-60)^2+(-60+281)^2 = 3600+48841 = 52441 = 229^2.
%e (A129626(1), a(2)) = (0, 281) is a solution: 0^2+(0+281)^2 = 78961 = 281^2.
%e (A129626(3), a(4)) = (559, 1009) is a solution: 559^2+(559+281)^2 = 312481+705600 = 1018081 = 1009^2.
%o (PARI) {forstep(n=-60, 200000000, [3, 1], if(issquare(2*n^2+562*n+78961, &k), print1(k, ",")))}
%Y Cf. A129626, A001653, A156035 (decimal expansion of 3+2*sqrt(2)), A157349 (decimal expansion of (297+68*sqrt(2))/281), A157350 (decimal expansion of (130803+73738*sqrt(2))/281^2).
%K nonn,easy
%O 1,1
%A _Klaus Brockhaus_, Apr 12 2009