login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Products of 3 distinct Sophie Germain primes.
8

%I #13 Feb 02 2018 02:54:18

%S 30,66,110,138,165,174,230,246,290,318,345,410,435,498,506,530,534,

%T 615,638,678,759,786,795,830,890,902,957,1038,1074,1130,1146,1166,

%U 1245,1265,1310,1334,1335,1353,1398,1434,1506,1595,1686,1695,1730,1749,1758,1790

%N Products of 3 distinct Sophie Germain primes.

%H G. C. Greubel, <a href="/A157346/b157346.txt">Table of n, a(n) for n = 1..5000</a>

%e 30 = 2*3*5; 2,3 and 5 are distinct Sophie Germain primes.

%e 66 = 2*3*11; 2,3 and 11 are distinct Sophie Germain primes.

%t lst={};Do[If[Plus@@Last/@FactorInteger[n]==3,a=Length[First/@FactorInteger[n]];If[a==3,b=First/@FactorInteger[n];c=b[[1]];d=b[[2]];e=b[[3]];If[PrimeQ[2*c+1]&&PrimeQ[2*d+1]&&PrimeQ[2*e+1],AppendTo[lst,n]]]],{n,7!}];lst

%t With[{sgps=Select[Prime[Range[100]],PrimeQ[2#+1]&]},Take[Union[ Times@@@ Subsets[sgps,{3}]],60]] (* _Harvey P. Dale_, Aug 10 2011 *)

%Y Cf. A001358, A005384, A111206, A157342, A006881, A157344, A157345, A007304.

%K nonn

%O 1,1

%A _Vladimir Joseph Stephan Orlovsky_, Feb 27 2009