login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A157305 G.f. A(x) satisfies the condition that both A(x) and F(x) = A(x*F(x)^2) have zeros for every other coefficient after initial terms; dual sequence A157302 satisfies the same condition. 9

%I

%S 1,1,-2,0,26,0,-1378,0,141202,0,-22716418,0,5218302090,0,

%T -1619288968386,0,653379470919714,0,-333014944014777730,0,

%U 209463165121436380282,0,-159492000935562428176162,0,144654795258284936534929586,0

%N G.f. A(x) satisfies the condition that both A(x) and F(x) = A(x*F(x)^2) have zeros for every other coefficient after initial terms; dual sequence A157302 satisfies the same condition.

%F For n>=2, [x^(2n)] A(x)^(4n+1) = 0.

%F G.f. satisfies: A(x) = F(x/A(x)^2) where F(x) = A(x*F(x)^2) = sqrt(Series_Reversion(x/A(x)^2)/x) = g.f. of A157307.

%F G.f. satisfies: A(x) = G(x/A(x)) where G(x) = A(x*G(x)) = Series_Reversion(x/A(x))/x = g.f. of A157306.

%e G.f.: A(x) = 1 + x - 2*x^2 + 26*x^4 - 1378*x^6 + 141202*x^8 -+...

%e ...

%e Let F(x) = A(x*F(x)^2) so that A(x) = F(x/A(x)^2) then

%e F(x) = 1 + x - 7*x^3 + 242*x^5 - 17771*x^7 + 2189294*x^9 -+...

%e has alternating zeros in the coefficients (cf. A157304):

%e [1,1,0,-7,0,242,0,-17771,0,2189294,0,-404590470,0,104785114020,0,...].

%e ...

%e COEFFICIENTS IN ODD POWERS OF G.F. A(x).

%e A^1: [(1),1,-2,0,26,0,-1378,0,141202,0,-22716418,0,...];

%e A^3: [1,(3),-3,-11,84,168,-4376,-8580,438348,865776,...];

%e A^5: [1,5,(0),-30,115,601,-7120,-30280,726680,2987400,...];

%e A^7: [1,7,7,(-49),91,1253,-8743,-65519,964768,6410880,...];

%e A^9: [1,9,18,-60,(0),1998,-8418,-112284,1106775,11070241,...];

%e A^11:[1,11,33,-55,-154,(2662),-5566,-166034,1108657,...];

%e A^13:[1,13,52,-26,-351,3055,(0),-220116,935051,23169939,...];

%e A^15:[1,15,75,35,-555,3003,7995,(-266565),565635,29818365,...];

%e A^17:[1,17,102,136,-714,2380,17646,-297160,(0),36161142,...];

%e A^19:[1,19,133,285,-760,1140,27740,-304608,-739670,(41596586),...];

%e ...

%e When scaled, the coefficients shown above in parenthesis

%e forms the coefficients of the function F(x) = A(x*F(x)^2):

%e F: [1,3/3,0,-49/7,0,2662/11,0,-266565/15,0,41596586/19,0,...].

%o (PARI) {a(n)=local(A=[1, 1]); for(i=1, n, if(#A%2==0, A=concat(A, t); A[ #A]=-subst(Vec(serreverse(x/Ser(A)))[ #A], t, 0)); if(#A%2==1, A=concat(A, t); A[ #A]=-subst(Vec(x/serreverse(x*Ser(A)))[ #A], t, 0))); Vec(x/serreverse(x*Ser(A)))[n+1]}

%Y Cf. A157306, A157307, A157302 (dual), A157303, A157304.

%K sign

%O 0,3

%A _Paul D. Hanna_, Feb 28 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 23:55 EDT 2021. Contains 348048 sequences. (Running on oeis4.)