login
A157293
Decimal expansion of zeta(3)/zeta(9).
0
1, 1, 9, 9, 6, 4, 7, 5, 3, 9, 6, 4, 7, 1, 3, 9, 7, 9, 0, 9, 4, 8, 0, 7, 8, 3, 0, 4, 8, 1, 0, 4, 0, 2, 3, 3, 0, 9, 9, 9, 8, 6, 5, 8, 5, 0, 2, 6, 2, 4, 3, 0, 8, 5, 3, 4, 7, 6, 0, 2, 7, 8, 1, 5, 5, 2, 4, 1, 9, 8, 3, 8, 0, 7, 7, 0, 9, 8, 1, 0, 0, 3, 6, 8, 4, 2, 0, 2, 4, 5, 8, 0, 1, 0, 9, 7, 8, 4, 7, 3, 1, 2, 3, 8, 8
OFFSET
1,3
COMMENTS
The product Product_{p = primes = A000040} (1+1/p^3+1/p^6). The product over (1+2/p^3+1/p^6) equals A157289^2.
FORMULA
Equals A002117/A013667 = Product_{i>=1} (1+1/A030078(i)+1/A030516(i)) .
EXAMPLE
1.19964753964713... = (1+1/2^3+1/2^6)*(1+1/3^3+1/3^6)*(1+1/5^3+1/5^6)*(1+1/7^3+1/7^6)*...
MAPLE
evalf(Zeta(3)/Zeta(9)) ;
MATHEMATICA
RealDigits[Zeta[3]/Zeta[9], 10, 120][[1]] (* Amiram Eldar, May 26 2023 *)
CROSSREFS
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Feb 26 2009
STATUS
approved