Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 May 12 2023 04:25:28
%S 1,6,1,6,8,9,2,2,0,5,1,1,2,7,8,2,7,9,2,2,9,1,5,6,3,3,6,4,5,7,1,1,9,4,
%T 3,2,7,3,3,7,8,7,8,7,9,1,9,4,8,0,2,6,3,7,8,1,1,1,4,6,5,5,8,6,8,3,5,8,
%U 5,1,8,7,1,3,9,9,4,2,7,4,3,9,2,2,8,9,0,0,1,5,3,9,0,0,8,2,5,2,2,6,3,6,2,7,2
%N Decimal expansion of 315/(2*Pi^4).
%C Equals the asymptotic mean of the abundancy index of the 5-free numbers (numbers that are not divisible by a 5th power other than 1) (Jakimczuk and Lalín, 2022). - _Amiram Eldar_, May 12 2023
%H Rafael Jakimczuk and Matilde Lalín, <a href="https://doi.org/10.7546/nntdm.2022.28.4.617-634">Asymptotics of sums of divisor functions over sequences with restricted factorization structure</a>, Notes on Number Theory and Discrete Mathematics, Vol. 28, No. 4 (2022), pp. 617-634, eq. (1).
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%F Equals Product_{p = primes} (1 + 1/p^2 + 1/p^4), whereas, the product over (1 + 2/p^2 + 1/p^4) equals A082020^2.
%F Equals A013661/A013664 = Product_{i>=1} (1+1/A001248(i)+1/A030514(i)).
%F Equals 315*A092744/2.
%F Equals Sum_{n>=1} 1/A004709(n)^2. - _Geoffrey Critzer_, Feb 16 2015
%e 1.61689220511... = (1+1/2^2+1/2^4)*(1+1/3^2+1/3^4)*(1+1/5^2+1/5^4)*(1+1/7^2+1/7^4)*...
%p evalf(315/2/Pi^4) ;
%t RealDigits[N[Zeta[2]/Zeta[6], 150]][[1]] (* _Geoffrey Critzer_, Feb 16 2015 *)
%o (PARI) 315/2/Pi^4 \\ _Charles R Greathouse IV_, Oct 01 2022
%Y Cf. A001248, A004709, A030514, A092744, A013661, A013664, A082020.
%K cons,easy,nonn
%O 1,2
%A _R. J. Mathar_, Feb 26 2009