login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of primitive inequivalent sublattices of square lattice having mirrors parallel to the diagonals of the unit cell of the parent lattice of index n.
7

%I #31 Apr 13 2023 10:43:55

%S 0,0,1,1,1,1,1,2,1,1,1,2,1,1,2,2,1,1,1,2,2,1,1,4,1,1,1,2,1,2,1,2,2,1,

%T 2,2,1,1,2,4,1,2,1,2,2,1,1,4,1,1,2,2,1,1,2,4,2,1,1,4,1,1,2,2,2,2,1,2,

%U 2,2,1,4,1,1,2,2,2,2,1,4,1,1,1,4,2,1,2

%N Number of primitive inequivalent sublattices of square lattice having mirrors parallel to the diagonals of the unit cell of the parent lattice of index n.

%C After a(2), this matches A034380 except for n = 63, 65, 80, 85, ... - _R. J. Mathar_, Feb 27 2009 [Updated by _Andrey Zabolotskiy_, May 09 2018]

%H Andrey Zabolotskiy, <a href="/A157230/b157230.txt">Table of n, a(n) for n = 1..5000</a>

%H J. S. Rutherford, <a href="https://doi.org/10.1107/S010876730804333X">Sublattice enumeration. IV. Equivalence classes of plane sublattices by parent Patterson symmetry and colour lattice group type</a>, Act. Cryst. A65 (2009) 156-163, Table 5 symmetry *mm2.

%F From _Andrey Zabolotskiy_, Sep 30 2018: (Start)

%F a(n) = (A060594(n) - A019590(n))/2.

%F a(n) = 2^(A046072(n)-1) for n>2. Thus a(n) = 1 if n>2 is in A033948, a(n) = 2 if n is in A272592, etc. (End)

%t a[n_] := If[n <= 2, 0, Sum[Boole[Mod[k^2, n] == 1], {k, 1, n}]/2];

%t Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Apr 12 2023 *)

%Y Cf. A145393 (all sublattices of the square lattice), A019590, A157228, A157226, A157231, A304182, A060594, A046072, A033948, A272592.

%K nonn

%O 1,8

%A _N. J. A. Sloane_, Feb 25 2009

%E New name and more terms from _Andrey Zabolotskiy_, May 09 2018