This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A157174 Triangle, read by rows, T(n,k,m) = (m*(n-k)+1)*binomial(n-1, k-1) + (m*k+1)* binomial(n-1, k) - m*k*(n-k)*binomial(n-2, k-1), with m = 3. 2
 1, 1, 1, 1, 5, 1, 1, 9, 9, 1, 1, 13, 18, 13, 1, 1, 17, 28, 28, 17, 1, 1, 21, 39, 38, 39, 21, 1, 1, 25, 51, 35, 35, 51, 25, 1, 1, 29, 64, 11, -50, 11, 64, 29, 1, 1, 33, 78, -42, -294, -294, -42, 78, 33, 1, 1, 37, 93, -132, -798, -1218, -798, -132, 93, 37, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 2, 7, 20, 46, 92, 160, 224, 160, -448, -28166, ...}. LINKS G. C. Greubel, Rows n = 0..100 of triangle, flattened FORMULA T(n,k,m) = (m*(n-k)+1)*binomial(n-1, k-1) + (m*k+1)* binomial(n-1, k) - m*k*(n-k)*binomial(n-2, k-1), with m = 3. EXAMPLE Triangle begins as:   1;   1,  1;   1,  5,  1;   1,  9,  9,    1;   1, 13, 18,   13,    1;   1, 17, 28,   28,   17,     1;   1, 21, 39,   38,   39,    21,    1;   1, 25, 51,   35,   35,    51,   25,    1;   1, 29, 64,   11,  -50,    11,   64,   29,  1;   1, 33, 78,  -42, -294,  -294,  -42,   78, 33,  1;   1, 37, 93, -132, -798, -1218, -798, -132, 93, 37, 1; MAPLE T:= proc(n, k, m) option remember;       if k=0 and n=0 then 1     else (m*(n-k)+1)*binomial(n-1, k-1) + (m*k+1)* binomial(n-1, k) - m*k*(n-k)*binomial(n-2, k-1)       fi; end: seq(seq(T(n, k, 3), k=0..n), n=0..10); # G. C. Greubel, Nov 29 2019 MATHEMATICA T[n_, k_, m_]:= If[n==0 && k==0, 1, (m*(n-k)+1)*Binomial[n-1, k-1] + (m*k+1)*Binomial[n-1, k] +-m*k*(n-k)*Binomial[n-2, k-1]]; Table[T[n, k, 3], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Nov 29 2019 *) PROG (PARI) T(n, k, m) = (m*(n-k)+1)*binomial(n-1, k-1) + (m*k+1)* binomial(n-1, k) - m*k*(n-k)*binomial(n-2, k-1); \\ G. C. Greubel, Nov 29 2019 (MAGMA) m:=3; [(m*(n-k)+1)*Binomial(n-1, k-1) + (m*k+1)* Binomial(n-1, k) - m*k*(n-k)*Binomial(n-2, k-1): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 29 2019 (Sage) m=3; [[(m*(n-k)+1)*binomial(n-1, k-1) + (m*k+1)* binomial(n-1, k) - m*k*(n-k)*binomial(n-2, k-1) for k in (0..n)] for n in [0..10]] # G. C. Greubel, Nov 29 2019 (GAP) m:=3;; Flat(List([0..10], n-> List([0..n], k-> (m*(n-k)+1)*Binomial(n-1, k-1) + (m*k+1)* Binomial(n-1, k) - m*k*(n-k)*Binomial(n-2, k-1) ))); # G. C. Greubel, Nov 29 2019 CROSSREFS Cf. A157172 (m=2), this sequence (m=3). Sequence in context: A046583 A046579 A153108 * A183450 A296128 A131061 Adjacent sequences:  A157171 A157172 A157173 * A157175 A157176 A157177 KEYWORD sign,tabl,changed AUTHOR Roger L. Bagula and Gary W. Adamson, Feb 24 2009 EXTENSIONS Edited by G. C. Greubel, Nov 29 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 09:21 EST 2019. Contains 329877 sequences. (Running on oeis4.)