login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1, read by rows.
23

%I #13 Jan 10 2022 03:06:06

%S 1,1,1,1,3,1,1,7,7,1,1,15,30,15,1,1,31,108,108,31,1,1,63,359,594,359,

%T 63,1,1,127,1145,2875,2875,1145,127,1,1,255,3568,12985,19246,12985,

%U 3568,255,1,1,511,10966,56306,116640,116640,56306,10966,511,1

%N Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1, read by rows.

%H G. C. Greubel, <a href="/A157152/b157152.txt">Rows n = 0..50 of the triangle, flattened</a>

%F T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5.

%F T(n, n-k, m) = T(n, k, m).

%F T(n, 1, 1) = A000225(n). - _G. C. Greubel_, Jan 09 2022

%e Triangle begins as:

%e 1;

%e 1, 1;

%e 1, 3, 1;

%e 1, 7, 7, 1;

%e 1, 15, 30, 15, 1;

%e 1, 31, 108, 108, 31, 1;

%e 1, 63, 359, 594, 359, 63, 1;

%e 1, 127, 1145, 2875, 2875, 1145, 127, 1;

%e 1, 255, 3568, 12985, 19246, 12985, 3568, 255, 1;

%e 1, 511, 10966, 56306, 116640, 116640, 56306, 10966, 511, 1;

%e 1, 1023, 33417, 238024, 665702, 918530, 665702, 238024, 33417, 1023, 1;

%t T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]];

%t Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 09 2022 *)

%o (Sage)

%o @CachedFunction

%o def T(n,k,m): # A157152

%o if (k==0 or k==n): return 1

%o else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m)

%o flatten([[T(n,k,1) for k in (0..n)] for n in (0..20)]) # _G. C. Greubel_, Jan 09 2022

%Y Cf. A007318 (m=0), this sequence (m=1), A157153 (m=2), A157154 (m=3), A157155 (m=4), A157156 (m=5).

%Y Cf. A157147, A157148, A157149, A157150, A157151, A157207, A157208, A157209, A157210, A157211, A157212, A157268, A157272, A157273, A157274, A157275.

%K nonn,tabl,easy

%O 0,5

%A _Roger L. Bagula_, Feb 24 2009

%E Edited by _G. C. Greubel_, Jan 09 2022