login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 - x - x^2 + x^3 - x^5) / ((1 + x)^2*(1 - x + x^2)^2).
3

%I #12 Oct 23 2019 07:10:27

%S 1,-1,-1,-1,2,1,1,-3,-1,-1,4,1,1,-5,-1,-1,6,1,1,-7,-1,-1,8,1,1,-9,-1,

%T -1,10,1,1,-11,-1,-1,12,1,1,-13,-1,-1,14,1,1,-15,-1,-1,16,1,1,-17,-1,

%U -1,18,1,1,-19,-1,-1,20,1,1

%N Expansion of (1 - x - x^2 + x^3 - x^5) / ((1 + x)^2*(1 - x + x^2)^2).

%C Hankel transform of A157127.

%H Colin Barker, <a href="/A157128/b157128.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,-2,0,0,-1).

%F a(n) = -2*a(n-3) - a(n-6) for n>5. - _Colin Barker_, Oct 23 2019

%t CoefficientList[Series[(1-x-x^2+x^3-x^5)/(1+2x^3+x^6),{x,0,60}],x] (* or *) LinearRecurrence[{0,0,-2,0,0,-1},{1,-1,-1,-1,2,1},70] (* _Harvey P. Dale_, Jul 08 2019 *)

%o (PARI) Vec((1 - x - x^2 + x^3 - x^5) / ((1 + x)^2*(1 - x + x^2)^2) + O(x^80)) \\ _Colin Barker_, Oct 23 2019

%K easy,sign

%O 0,5

%A _Paul Barry_, Feb 23 2009