login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157125
A transform of the Catalan numbers.
2
1, -1, -1, 0, 2, 1, -1, -4, -2, 4, 12, 4, -20, -39, 3, 92, 118, -84, -388, -308, 596, 1528, 508, -3292, -5556, 1154, 16034, 17940, -18160, -71243, -45913, 127124, 290278, 46128, -710864, -1067564, 485108, 3504680, 3362756, -4957812, -15669148
OFFSET
0,5
COMMENTS
Hankel transform is A157126. Partial sums are A157127.
FORMULA
G.f.: (1-x)*(sqrt(1+x^2+4*x^3)-sqrt(1+x^2))/(2*x^3*sqrt(1+x^2));
a(n) = Sum_{k=0..n} (-1)^binomial(n-k+1,2)*binomial(floor((n-k)/2),k)*A000108(k).
Conjecture: (n+3)*(n-2)*a(n) -4*a(n-1) +2*(n^2-n-4)*a(n-2) +2*(2*n^2-7*n+2)*a(n-3) +(n+1)*(n-4)*a(n-4) +2*(n-1)*(2*n-7)*a(n-5)=0. - R. J. Mathar, Nov 15 2012
CROSSREFS
KEYWORD
easy,sign
AUTHOR
Paul Barry, Feb 23 2009
EXTENSIONS
Divisor x^3 inserted in the g.f. - R. J. Mathar, Feb 06 2015
STATUS
approved