login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=1; a(n) = floor((n-1)*Sum_{k=1..n-1} 1/a(k)).
1

%I #15 Apr 26 2020 05:47:34

%S 1,1,4,6,9,12,15,18,21,25,28,31,34,37,41,44,47,51,54,57,61,64,68,71,

%T 75,78,82,85,89,92,96,99,103,106,110,113,117,120,124,128,131,135,138,

%U 142,146,149,153,157,160,164,168,171,175,179,182,186,190,193,197,201,204

%N a(1)=1; a(n) = floor((n-1)*Sum_{k=1..n-1} 1/a(k)).

%H Vaclav Kotesovec, <a href="/A157124/b157124.txt">Table of n, a(n) for n = 1..10000</a>

%e For n = 5, (5-1)*(1 + 1 + 1/4 + 1/6) = 4*29/12 = 29/3. So a(5) = floor(29/3) = 9.

%p a[1] := 1: for n to 65 do a[n+1] := floor(n*(sum(1/a[k], k = 1 .. n))) end do: seq(a[n], n = 1 .. 65); # _Emeric Deutsch_, Mar 01 2009

%t a[1] = 1; a[n_] := a[n] = Floor[(n - 1)*Sum[1/a[k], {k, 1, n - 1}]]; Table[a[n], {n, 1, 100}] (* _Vaclav Kotesovec_, Apr 26 2020 *)

%K nonn

%O 1,3

%A _Leroy Quet_, Feb 23 2009

%E More terms from _Emeric Deutsch_, Mar 01 2009