login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A008292(n*k + 1, n-k) if k <= n otherwise A008292(n*(n-k), k), read by rows.
2

%I #7 Sep 08 2022 08:45:41

%S 2,1,1,1,8,1,1,131,131,1,1,8204,29216,8204,1,1,2097187,44136233,

%T 44136233,2097187,1,1,2147483736,846839476071,503464582368,

%U 846839476071,2147483736,1,1,8796093022411,150092195453359483,288159195861579519,288159195861579519,150092195453359483,8796093022411,1

%N Triangle T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A008292(n*k + 1, n-k) if k <= n otherwise A008292(n*(n-k), k), read by rows.

%H G. C. Greubel, <a href="/A157117/b157117.txt">Rows n = 0..25 of the triangle, flattened</a>

%F T(n, k) = f(n, k) + f(n, n-k), where f(n, k) = A008292(n*k + 1, n-k) if k <= n otherwise A008292(n*(n-k), k).

%F T(n, n-k) = T(n, k).

%e 2;

%e 1, 1;

%e 1, 8, 1;

%e 1, 131, 131, 1;

%e 1, 8204, 29216, 8204, 1;

%e 1, 2097187, 44136233, 44136233, 2097187, 1;

%e 1, 2147483736, 846839476071, 503464582368, 846839476071, 2147483736, 1;

%t f[n_, k_]:= If[k<=n, Eulerian[n*k+1,n-k], Eulerian[n*(n-k)+1,k]];

%t T[n_, k_]:= f[n,k] + f[n,n-k];

%t Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Jan 11 2022 *)

%o (Magma)

%o Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >;

%o f:= func< n,k | k le n select Eulerian(n*k+1,n-k) else Eulerian(n*(n-k)+1, k) >;

%o A157117:= func< n,k | f(n,k) + f(n,n-k) >;

%o [A157117(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jan 11 2022

%o (Sage)

%o def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1))

%o def f(n,k): return Eulerian(n*k+1,n-k) if (k<n+1) else Eulerian(n*(n-k)+1, k)

%o def A157117(n,k): return f(n,k) + f(n,n-k)

%o flatten([[A157117(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jan 11 2022

%Y Cf. A008292, A157114, A157118.

%K nonn,tabl

%O 0,1

%A _Roger L. Bagula_, Feb 23 2009

%E Edited by _G. C. Greubel_, Jan 11 2022